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THE APPLICATION OF MULTIGRID TO NAVIER-STOKES 
SIMULATION OF 3D FLOW IN AXIAL AND RADIAL 

FLOW TURBOMACHINERY 
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SUMMARY 
This paper describes the implementation of a 3 D  Navier-Stokes solver within the framework of a multigrid 
strategy. The ability of multigrid to improve and sustain code performance over a range of mesh sizes and a 
variety of difficult flow problems is investigated. The code is applied to the study of the shock-induced 
boundary layer separation on a channel hump, the flow in a 2 D  cascade of compressor blades, the secondary 
flow development in a linear cascade ofgas turbine blades and the Eckardt backswept centrifugal impeller. In 
each case multigrid leads to significantly improved performance. 
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INTRODUCTION 

Stable, efficient algorithms for time-marching the three-dimensional Navier-Stokes equations 
exist and are much researched. Several codes have been developed to the point at which 
application to practical flows in turbomachinery can begin. The physical realism of our numerical 
simulations is now limited by turbulence modelling and by our ability to use a sufficiently fine 
mesh to resolve the flow field. 

Whilst turbulence modelling is likely to remain a pacing item for some time, rapidly developing 
computer hardware means that computer memory, and hence mesh size, is becoming less of a 
problem. As Navier-Stokes solvers are increasingly brought into the design environment, the key 
issue is to maintain the performance of the code, and hence the solution cost, as finer and finer 
meshes are employed. 

The convergence history of a typical code has two phases. Initially, convergence is rapid as the 
algorithm efficiently eliminates high-frequency components of the solution error. In the second 
phase the low-frequency errors have become dominant and the convergence rate slows. The 
spectral radius associated with the second phase has the form I ,  = 1 - O(AX2) and it is clear that 
mesh refinement carries with it the risk of dramatic deterioration in code performance and 
escalation of solution cost. 

One way round this difficulty is to deploy the basic solution algorithm within a multigrid 
strategy. The basic multigrid idea is to solve the flow simultaneously on a succession of coarser 
meshes. Solution residues are computed on the finest mesh and restricted to the coarser meshes. 
On each coarse mesh, corrections to the basic flow variables are computed which are then 
prolonged to the finest mesh. Each mesh efficiently eliminates its own high-frequency errors and so 
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a sweep through the meshes allows a spectrum of errors to be handled optimally. As finer meshes 
are employed, more multigrid levels can be implemented and so, in principle, the convergence rate 
of the code should be independent of mesh size and thus the solution cost should vary only linearly 
with the number of mesh nodes used. 

EQUATIONS OF MOTION 

The three-dimensional Reynolds-averaged Navier-Stokes equations are written in finite volume 
form and cast in the blade-relative frame using cylindrical co-ordinates ( r ,  8, x)'. 

where 

with q= W,f,+ Wr f r+  W,f, the relative velocity, 0 the rotation speed, z the stress tensor 
(containing both the static pressure and the viscous stresses) and I = c p  Tore, -+(Rr)* the rothalpy. 
The system is closed by an equation of state 

p=p(y - I)(E -05*(q * q  

and a mixing length turbulence model patterned after Baldwin and Lomax.2 

NUMERICAL SOLUTION PROCEDURE 

Finite volume formulation 

The governing equations (1) are written in integral conservation form and the numerical 
discretization is designed to mimic this. We divide the computational domain into hexahedral cells 
and store the variables U=(p, pW,, rpW,, pWr, p E )  at cell centres (ijk). The integrals in the 
equations are replaced by discrete summation around the faces of the computational cell: 

Fluxes through cell faces are found by linear interpolation of density, velocity, etc. between cell 
centres, and so the formal spatial accuracy is second order on smoothly varying meshes and global 
conservation is ensured. Viscous stresses are computed by defining a local curvilinear co-ordinate 
system and the chain rule. 

Artijicial viscosity 

An adaptive artificial viscosity term recommended by Jameson and Baker3 is added to the 
discretized equations (2) to control odd-even point solution decoupling and to suppress 
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oscillations in regions with strong pressure gradients. Equation (2) becomes 
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( 3 )  

where D is the dissipative operator. 
The artificial viscosity term has the form 

D(U) =DI + Dj + DK, 
where D,, D, and DK represent the contributions from each of the curvilinear co-ordinate 
directions. Each contribution is written in conservation form as, for example, 

Dl = di+ 4 j k  -di - I j k .  
2. 

The right-hand-side terms have the form 

The coefficients d2) and d4) are determined by the flow in a self-adaptive manner: 

&!’)I I +  ZJ ‘k =KC2)AMIN1 (0.5, (7cijk+7ci+ljk)*0’5), 

&$y+jk=AMAXl (0, (KC4’-C1&(i?+jk)), 

where 
Z.. Ilk = ( p .  I + 1 j k P 2 P i j k  + Pi- 1 j k l / ( P i  + 1 jk+ 2 P i j k  + Pi - Ijk). 

In the current effort we have used values for the constants of K(’)=  1, KC4)=0.01 and a = 2 .  
Numerical experimentation showed that the dissipation in directions normal to solid boundaries 
should be set to zero to avoid masking the physical viscosity. 

Boundary conditions 

At inflow the total temperature and pressure are fixed and either the flow angle or the absolute 
swirl velocity is held constant depending on whether the relative flow is subsonic or supersonic. At 
outflow the hub static pressure is fixed and the radial variation derived from the simple radial 
equilibrium equation. 

The finite volume mesh is constructed so that cell faces lie on solid surfaces (blades, hub and 
casing) and along the periodic boundaries upstream and downstream of the blade row. 
Consequently, cells adjacent to periodic boundaries are updated just as if they were interior cells 
with the flux across the periodic boundary formed from linear interpolation between variables 
stored at the centres of the cells on either side of the boundary. 

For cells adjacent to solid boundaries, zero fluxes of mass, momentum and energy are imposed 
through the cell face aligned with the solid boundary. In addition, boundary conditions must be 
devised for the wall static pressure and wall shear stress; these two, acting on the wall cell face, are 
used in updating the momentum and energy equations for the cells adjacent to the solid wall. The 
wall static pressure is found by setting the derivative of pressure normal to the wall equal to zero. 
This is an accepted high-Reynolds-number approximation to solving the normal momentum 
equation. To prescribe the wall shear stress, we use the velocities stored at cell centres adjacent to 
the wall and the known zero value of velocity on the wall to compute the velocity gradients at the 
wall. These gradients together with the wall viscosity are used with a locally defined curvilinear co- 
ordinate system to compute the wall shear stresses. If the mesh spacing near the wall is large 
relative to the sublayer scale, then a logarithmic skin friction correlation is used. 
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Preprocessed algorithm 

in References 4 and 5. In outline, we define a residue R* by the two steps 
The discretized equations are time-marched using an implicit preprocessed algorithm described 

We then update the variables by solving the implicit set of equations 

where c l ,  E~ and E~ are free parameters (of order unity), I.,,  AJ and iK are the spectral radii of the 
Jacobians associated with the convective fluxes in the I ,  J and K directions, and hil 4, for example, 
represents The left-hand side is factored into three tridiagonal matrices for 
efficient inversion. 

Although in principle the algorithm can be made stable for any size of time step by suitable 
choice of the free parameters E , ,  cJ and E ~ ,  in practice it is found that there is an optimum range of 
time steps which leads to a minimum number of steps to convergence. Extensive numerical 
experimentation for a range of geometries showed that larger time steps required larger values of E 

for stability, and that after a certain point the solutions became too smoothed during the transient, 
delaying convergence. It was found that CFL numbers in the range 2-3 were optimal with 
associated values of E equal to unity. For the results presented in this paper, the CFL number was 2 
and E I = & J = E K =  1. 

+ - 2d1 + q 5 -  

MULTIGRID CONVERGENCE ACCELERATION 

Rationale 

The convergence history of a typical code has two phases. Initially, convergence is rapid as high- 
frequency components of the solution error are efficiently eliminated. Then, when low-frequency 
errors have become dominant, the convergence rate slows as the spectral radius associated with 
this second phase is of the form 1 -O(AX2). 

For the model convection equation 

au au 
at ax 3 

- + A - = O  (7) 

application of the present preprocessed algorithm, (5) and ( 6 ) ,  shows that the spectral radius for 
short wavelengths is 

I , = 1 - ( 1 1 ~ ~ - 1 7 2 ~ ~ ~ ~ ) / ( 1  + 4 c 2 )  ( 8 )  

A m  = 1 - O - ~ C ~ ( ~ A X / L ) ~ ,  (9) 

and for long wavelengths is 
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where c is the courant number AAtIAX, E is the coefficient of the fourth-derivative smoothing and 
L is the length of the computational domain. Thus the initial convergence rate An is a function of 
the time step size and smoothing only; but the ultimate convergence rate A, is a quadratic function 
of the mesh size and this is why mesh refinement can cause dramatic deterioration of code 
performance. 

The basic principle of the multigrid technique3* is to take advantage of the fact that the finite 
volume residue R, (equation (5 ) )  has errors over the whole range of wavelengths which can be 
supported by the mesh. The time-marching algorithm, equation (6), is efficient at eliminating the 
short-wavelength components of this error, but much less so for higher wavelengths. So we define 
a succession of ever coarser meshes, typically by deleting every other mesh line, derive an 
appropriate representation of the residue on each mesh and use the basic time-marching solver, 
equation (6), to reduce the level of the error associated with the current mesh. Thus sweeping 
through the meshes should allow each of the wavelengths in the residue error to be attacked with 
optimum efficiency. 

There have been several successful applications of multigrid to the Euler equations (for example, 
Jameson3 for external flow and Ni7 for cascade flow) and some work on viscous cascade flow (for 
example, Chima’). However, much remains unclear. In particular, not much is known about the 
application of the standard multigrid methodology6 to flow with rapidly refined meshes, with 
severe mesh aspect ratios, with strong shock waves and with boundary layers, boundary layer 
separation and secondary flow. This paper adopts a standard multigrid approach, like a ‘recipe’, 
and attempts solutions for a wide variety of ‘difficult’ flows. 

Multigrid recipe 

by 
(i) Update finest mesh variables using the basic time-marching solver, equation (6), represented 

L ~ A U ~ =  R ~ ( u ~ )  + ph. (10) 

Here U h  is the variable ( p ,  pw,, etc.) on the finest mesh, h; Rh is the fine mesh residue; Lh is the fine 
mesh implicit operator; AUh is the correction to the fine mesh variables, 

U h = U h + A U h ;  (1 1) 

and P h  is the forcing function (zero on the finest mesh). 

operator I i h ,  and define a forcing function PZh: 
(ii) Collect residues and variables to the next mesh, the 2k mesh, using a suitable collection 

u Z h = ~ ; h u h ,  p Z h = ~ ; h ~ h ( u h ) -  R Z ~ ( U ~ ~ ) .  (12) 

l i h U h =  E UhAVOLh/EVOLh, (13) 

The collection operator performs a volume-weighted average to maintain conservation, 

with the sum being over the fine mesh cells gathered together to form the next mesh cell. This 
procedure also eliminates error with twice the wavelength of the fine mesh which cannot be 
supported on the next mesh. 

(iii) Update current mesh variables using the basic time-marching solver: 

LZhAUzh=RZh(UZh)+pzh. (14) 

The forcing function guarantees fine mesh accuracy by causing the coarse mesh solution to be 
driven by the fine mesh residues. 
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(iv) Prolong the course mesh corrections to the finest mesh using a prolongation operator I;,, 
and update the finest mesh variables: 

U h =  iJh+lh,,AU Zh.  (15) 

This prolongation must not reintroduce errors on the finest mesh eliminated in step (i). 

Outline of implementation 

The guiding principle of the current implementation is that only thejnest mesh should solve the 
Navier-Stokes equations themselves; the role of the coarser meshes is to propagate information 
(mainly blockage) concerning the fine mesh solution to the flow field at large. On the finest mesh 
the viscous no-slip condition on blade surfaces is applied in terms of a shear stress on the cell face 
aiigned with the blade surface (see section on ‘boundary conditions’); this drives a viscous solution. 
On the coarser meshes this wall shear stress is set to zero and the solution is instead driven by the 
blockage distribution represented by the ‘collected’ finest mesh variables. This idea is similar to the 
standard method of coupling a boundary layer solution to an inviscid core-flow solver via the 
boundary layer displacement thickness and surface transpiration. In the current context the col- 
lected fine mesh variables are thought of as containing generalized ‘displacement thickness’ type 
information. In other words, in the current implementation the finest mesh is Navier-Stokes, the 
coarser meshes are Euler plus blockage. 

1 
X I  c 0 

Figure 1. Transonic flow over an 18% channel hump 
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Table I 

Mesh 
Steps to 

convergence CPU minutes 
~~~~~ 

81 x 25 No multigrid, lh  1800 
1 level, lh ,  2h 750 
2 levels, l h ,  2h, 4h 500  

569 

276 
- 

81 x 49 2 levels, lh, 2h, 4h 600 690 

67 X 28 morh 

0 0 1000 tlnu atepa 

Figure 2. Cascade of compressor blades 
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Figure 3. Secondary flow in a linear cascade of gas turbine rotor blades 

PRESENTATION AND DISCUSSION OF RESULTS 

The problems addressed range from a simple channel hump to a centrifugal impeller. All 
computations were performed on a Perkin Elmer 3230 mini-system using 32-bit arithmetic. In 
each case, over ranges of mesh size, multigrid allowed significantly improved code performance. A 
solution cost varying only linearly with mesh size is demonstrated. 
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Figure 4. High-speed centrifugal impeller 

TransonicJlow over an 18% channel hump 

Figure 1 shows Mach number contours predicted by the present multigrid Navier-Stokes 
solver together with predicted velocity vectors (showing the TE separation bubble) and a 
comparison of predicted hump surface pressure coefficient with experiment. The application of the 
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multigrid methodology is summarized in Table I. The convergence criterion was reduction of the 
R M S  ROVX flux residue to 2.E-06. Use of levels beyond 4h gave little extra improvement. 
Comparing the two mesh densities shows that multigrid allows the convergence rate to be 
maintained and a solution to be obtained in approximately the same number of steps and with a 
solution cost nearly linear with mesh size (the aim of multigrid). 

Cascade of compressor blades 

Figure 2 shows the 67 x 29 mesh and predicted Mach numbers for this simple generic 
compressor blade. The convergence history shows dramatic improvement in rate with one level, 
but little extra improvement with the second level; the mesh becomes too coarse to carry enough 
meaningful information. The first-level computations demonstrate the theoretical performance: 
the number of time steps is reduced by a factor of three (At + 2At = 3At) with similar reductions in 
CPU cost. 

The second convergence history shows the effect of doubling the mesh density to 131 x 57. 
Without multigrid the code performance deteriorates: one level of multigrid improves the rate; two 
levels improve the rate still further to the same rate achieved on the 67 x 29 mesh. This confirms 
that multigrid should allow solutions always to be achieved in the same number of time steps so 
that the solution cost is simply linear with mesh density. 

Secondary.Pow in a linear cascade of gas turbine rotor blades 

Figure 3 shows the predicted development of the secondary flow in a linear cascade. The 
contours of total pressure show the endwall fluid swept towards the suction side of the passage and 
rolling up into a passage vortex. The velocity vectors show the extent of the. spanwise flow. 
Predictions were performed using a 17 x 49 x 17 mesh and without multigrid converged in 900 
time steps. Using one level of multigrid reduced the number of time steps required to 500. 

High-speed centrifugal impeller 

The flow in the backswept impeller’ is complex, being dominated by strong secondary flows 
leading to the formation of a pronounced jet-wake structure. The predictions shown compared 
with measurement in Figure 4 were performed on a 17 x 59 x 17 mesh. Without multigrid the 
convergence rate is very poor. Just one level of multigrid produces a dramatic improvement, 
making, in fact, a solution feasible. Further levels of multigrid give little additional improvement 
as the meshes become too coarse to retain any useful flow information. A large part of the success 
of multigrid here is due to the accelerated establishment of the mass flow in the impeller; this 
prevents the ‘slopping’ which severely retards (or even prevents) convergence when not using 
multigrid. 
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